Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/transports/handbook-of-numerical-simulation-of-in-flight-icing/descriptif_4951624
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=4951624

Handbook of Numerical Simulation of In-Flight Icing, 1st ed. 2024

Langue : Anglais

This Handbook of Numerical Simulation of In-Flight Icing covers an array of methodologies and technologies on numerical simulation of in-flight icing and its applications. Comprised of contributions from internationally recognized experts from the Americas, Asia, and the EU, this authoritative, self-contained reference includes best practices and specification data spanning the gamut of simulation tools available internationally that can be used to speed up the certification of aircraft and make them safer to fly into known icing. The collection features nine sections concentrating on aircraft, rotorcraft, jet engines, UAVs; ice protection systems, including hot-air, electrothermal, and others; sensors and probes, CFD in the aid of testing, flight simulators, and certification process acceleration methods. Incorporating perspectives from academia, commercial, government R&D, the book is ideal for a range of engineers and scientists concerned with in-flight icing applications.

 


Numerical Simulation of Droplets Impingement by a Lagrangian Method.- Numerical Simulation of Dispersed Phase Droplets Impingement by a Hybrid Eulerian-Lagrangian Method.- Numerical Simulation of Supercooled Droplets Deformation, Impingement and Freezing for In-Flight Icing.- Numerical Simulation of In-Flight Icing by a Multi-Step Level-Set Method.- Numerical Simulation of In-Flight Icing by Coupled Immersed Boundary and Level-Set Methods.- Numerical Simulation of In-Flight Icing Under Uncertain Conditions.- Numerical Simulation of In-Flight Icing via a Particle-Based Morphogenetic Method.- Numerical Simulation of Convective Heat Transfer for In-Flight Icing.- Numerical Simulation of In-Flight Iced Surface Roughness.- Numerical Simulation of Iced Swept Wing Aerodynamics with RANS, DES, and IDDES.- Numerical Simulation of Aerodynamic Features with Ice Shapes via High-Fidelity CFD Method.

Professor Habashi holds a Ph.D. in Aeronautical Engineering from Cornell and has been active with Aerospace OEMs internationally, with over 450 publications, more than half targeting the development and deployment of 3-D simulation systems for the certification of aircraft, rotorcraft, and jet engines for flying into known icing. After acting for 24 years as an aerodynamics consultant to Pratt & Whitney Canada for the CFD of jet engines (90 joint publications), his expanding research was sponsored through 3 successive NSERC (Natural Sciences and Engineering Research Council of Canada) Industrial 5-year Research Chairs by Bombardier Aerospace, Bell Helicopter, CAE Simulators, Silicon Graphics, and Lockheed Martin focusing on high-performance computing applied to aerodynamic design ranging from the subsonic to the hypersonic regimes.

He is the founder of Newmerical Technologies International Inc. which in 2000 started developing the FENSAP-ICE in-flight icing simulation system, acquired by ANSYS in 2015, following which he started CERTIF-ICE Inc., planning and conducting in Canada the natural icing campaigns of two aircraft: COMAC’s ARJ21 (turbofan) and AVIC’s Y-12F (turboprop). 

He is a Fellow of Pratt & Whitney Canada, the Academy of Sciences of the Royal Society of Canada, the Canadian Academy of Engineering, the American Institute of Aeronautics and Astronautics, and the American Society of Mechanical Engineers.

He has received prizes straddling the scientific and technology transfer worlds, among them the British Association Medal for Great Distinction in Mechanical Engineering, the E.W.R. Steacie Fellowship from NSERC for Outstanding Research in Computational Aerodynamics early in his academic career, followed by the Technology Partnership Award of Pratt & Whitney Canada for Advancing Numerical Technologies of Gas Turbine Applications, the Concordia University Senior Research Fellow Award for Excellence in Research, the Cray Gig
Assembles and cross-references an unrivaled selection of competencies and best practices on in-flight icing Clarifies and brings attention to efforts promoting simulation for certifying aircraft to fly into known icing Applicable to R&D concerned with aircraft, helicopters, jet engines and appendages in need of in-flight icing protection

Date de parution :

Ouvrage de 1283 p.

15.5x23.5 cm

Disponible chez l'éditeur (délai d'approvisionnement : 15 jours).

896,74 €

Ajouter au panier