Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/sciences-de-la-terre/micrometeorology/descriptif_5053903
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=5053903

Micrometeorology (3rd Ed., 3rd ed. 2024) Springer Atmospheric Sciences Series

Langue : Anglais

Auteurs :

Couverture de l’ouvrage Micrometeorology

The book focuses on atmospheric processes that directly influence human environments within the lower 100?1000 meters of the atmosphere, spanning regions of only a few kilometers in size. It represents the English translation of the fourth edition of the German work titled "Applied Meteorology ? Micrometeorological Methods". It provides a fundamental understanding of micrometeorology as applied to various disciplines, including biometeorology, agrometeorology, hydrometeorology, technical meteorology, environmental meteorology, and biogeosciences, through carefully selected examples.

A central theme of this book revolves around the crucial issues of transport processes and fluxes between the atmosphere and the underlying surface, with special emphasis on vegetated and heterogeneous surfaces. The authors comprehensively cover theory, measurement techniques, experimental methods, and modeling, presenting these concepts in a manner that can be readily applied for teaching, research, or practical applications.

Compared to the second edition, the new features include updates and minor additions in all chapters, as well as selected new content that addresses the challenges posed by climate change.

Content

 

Preface           

Content          

Symbols         

1            General Basics         

1.1         Micrometeorology   

1.2         Atmospheric Scales 

1.3         Atmospheric Boundary Layer                     

1.4         Energy and Radiation Fluxes at the Earth’s Surface           

1.4.1      Net Radiation at the Earth’s Surface

1.4.2      Energy Balance at the Earth’s Surface        

1.4.3      Ground Heat Flux and Ground Heat Storage          

1.4.4      Turbulent Fluxes      

1.5         Water Balance Equation      

              References

 

2            Basic Equations of Atmospheric Turbulence          

2.1         Equation of Motion 

2.1.1      Navier-Stokes Equation of Mean Motion   

2.1.2      Turbulent Equation of Motion         

2.1.3      Closure Techniques

2.1.3.1   Local First Order Closure

2.1.3.2   Non-Local First Order Closure

2.1.3.3   Higher Order Closure

2.2         Equation of the Turbulent Kinetic Energy  

2.3         Flux-Gradient Similarity      

2.3.1      Profile Equations for Neutral Stratification

2.3.2      Integration of the Profile Equation – Roughness and Zero-Plane Displacement

2.3.3      Monin-Obukhov's Similarity Theory

2.3.3.1   Basics           

2.3.3.2   Profile Equations and Universal Functions

2.3.3.3   Application in Large-Scale Models

2..3.3.4  Limits of the theory

2.3.4      Bowen-Ratio Similarity       

2.4         Flux-Variance Similarity     

2.5         Turbulence Spectrum          

2.6         Atmospheric Boundary Layer

2.6.1      Mixed Layer Height

2.6.2      Resistance Law

2.6.3      Integral Turbulence Characteristics

              References

 

3            Specifics of the Near-Surface Turbulence   

3.1         Properties of the Underlying Surface          

3.1.1      Roughness – Additional Remarks   

3.1.2      Zero-Plane Displacement – Additional Remarks

3.1.3      Profiles in Plant Canopies   

3.2         Internal Boundary Layers    

3.2.1      Definition    

3.2.2      Experimental Findings        

3.2.3      Thermal Internal Boundary Layer   

3.2.4      Blending-Height Concept   

3.2.5      Practical Relevance of Internal Boundary Layers   

3.3         Obstacles     

3.4         Footprint      

3.4.1      Definition    

3.4.2      Footprint Models     

3.4.3      Application of Footprint Models

3.4.4      Environmental Response Function 

3.5         High Vegetation      

3.5.1      Behaviour of Meteorological Parameters in a Forest          

3.5.2      Counter Gradient Fluxes – Coherent Structures

3.5.3      Roughness Sublayer – Mixing Layer

3.5.4      Coupling between the Atmosphere and the Plant Canopies

3.6         Advection

3.7         Conditions under Stable Stratification        

3.8         Energy Balance Closure      

              References

 

4            Experimental Methods for Estimating the Fluxes of Energy and Matter   

4.1         Profile Method        

4.1.1      Profile Method with Two Measurement Heights

4.1.1.1   Bulk Approach

4.1.1.2   Bowen-Ratio Method

4.1.1.3   Modified Bowen-Ratio Method

4.1.1.4   Further Parameterization Methods

4.1.1.5   Quality Assurance

4.1.2      Profile Method with Several Measurement Heights

4.1.3      Power Law

4.2         Eddy-Covariance Method  

4.2.1      General Basics

4.2.2      Basics in Measuring Techniques

4.2.3      Applicable Correction Methods

4.2.3.1   Control of the Raw Data

4.2.3.2   Coordinate Rotation

4.2.3.3   Spectral Correction in the High Frequency Range

4.2.3.4   Spectral Correction in the Low Frequency Range

4.2.3.5   Correction of the Buoyancy Flux

4.2.3.6   WPL-Correction

4.2.3.7   Correction of Trace Gas Fluxes

4.2.4      Correction Methods not to be Used or to be Used only with Caution

4.2.4.1   Flow Distortion Correction 

4.2.4.2   Transducer Correction

4.2.4.3   Angle of Attack Correction

4.2.4.4   Modification of the WPL-Correction

4.2.4.5   Correction of the Specific Heat

4.2.4.6   Advection Correction

4.2.4.7   Burba Correction

4.2.5      Quality Assurance   

4.2.6      Gap Filling

4.2.7      Overall Evaluation   

4.3         Disjunct Eddy-Covariance Method (DEC) 

4.4         Flux-Variance Relations      

4.5         Accumulation Methods       

4.5.1      Eddy-Accumulations-Method (EA)

4.5.2      Relaxed Eddy-Accumulation Method (REA)

4.5.3      Hyperbolic Relaxed Eddy-Accumulation Method (HREA)

4.5.4      Surface Renewal Method    

4.6         Fluxes of Chemical Substances       

              References

 

5            Modelling of the Energy and Matter Exchange      

5.1         Energy Balance Methods    

5.1.1      Determination of the Potential Evaporation

5.1.1.1   Simple Empirical Methods  

5.1.1.2   Priestley-Taylor Approach

5.1.1.3   Penman Approach

5.1.2      Determination of the Actual Evaporation

5.1.2.1   Simple Empirical Methods  

5.1.2.2   Penman-Monteith Approach

5.1.2.3   FAO-Grass-Reference-Evapotranspiration

5.1.2.4   Overall Assessment of the Methods for Determining Actual Evaporation

 

5.1.3      Determination from Routine Weather Observations           

5.2         Hydrodynamical Multilayer Models           

5.3         Resistance Approach           

5.4         Modelling of Water Surfaces          

5.5         Boundary Layer Modelling

5.5.1      Prognostic Models for Mixed Layer Height

5.5.2      Parameterization of the Wind Profile in the Boundary Layer  

5.6         Large-Eddy Simulation       

5.7         Area Averaging       

5.7.1      Simple Area Averaging Methods    

5.7.2      Complex Area-Averaging Methods

5.7.3      Model Coupling       

              References

 

6            Measurement Technique      

6.1         Data Collection        

6.1.1      Principles of Digital Data Collection          

6.1.2      Signal Sampling       

6.1.3      Transfer Function    

6.1.4      Inertia of a Measurement System

6.1.4.1   Time Constant

6.1.4.2   Distance Constant

6.1.4.3   Dynamic Error        

6.2         Adaptation of the Measurement Sensor to the Measured Object

6.2.1      Adaptation to the Scale of Atmospheric Processes

6.2.2      Moving Measurement Systems

6.3         Measurement of Meteorological Elements  

6.3.1      Radiation Measurements                 

6.3.2      Wind Measurements

6.3.3      Temperature and Humidity Measurements 

6.3.3.1   Temperature Measurements

6.3.3.2   Humidity Measurements

6.3.4      Precipitation Measurements

6.3.5      Remote Sensing Methods

6.3.5.1   Sodar-RASS 

6.3.5.2   Lidar

6.3.5.3   Scintillometer

6.3.5.4   Optical Fiber-Based Distribution Sensing

6.3.6      Measurements in the Soil

6.3.6.1   Soil moisture

6.3.6.2   Soil Heat Flux

6.3.6.3   Soil Chamber Measurements

6.3.7      Other Measurement Techniques

6.3.7.1   Measurements at Plants

6.3.7.2   Direct evaporation measurement

6.4         Quality Assurance   

6.4.1      Measurement Planning

6.4.2      Quality Control        

6.4.2      Intercomparison of Measuring Devices      

              References

 

7            Microclimatology     

7.1         Climatological Scales          

7.2         Generation of Local Climate

7.2.1      Small-Scale Changes of Climate Elements 

7.2.2      Local Climate Types

7.2.2.1   Classification of Local Climate Zones

7.2.2.2   Effect of the Local Climate on Humans

7.2.2.3   Selected Non-Urban Local Climate Zones  

7.2.2.4   Urban Local Climate Zones

7.3         Microclimate Relevant Circulations

7.3.1      Land-Sea Wind Circulation 

7.3.2      Mountain-Valley Circulation           

7.4         Local Cold-Air Flows          

7.5         Land Use Changes and Local Climate

7.5.1      Changes of Surface Roughness

7.5.2      Changes of Evaporation

7.5.3      Change of the Albedo

7.5.4      Degradation

7.6         Microclimatological Measurements

              References

             

8            Selected practical applications        

8.1.        Distribution of Air Pollution

8.2         Meteorological Conditions of Wind Energy Use   

8.3         Sound Propagation in the Atmosphere        

8.4         Human Biometeorology      

8.5         Perspectives of the Applied Meteorology   

              References

 

              Appendix     

A1         Further Monographs

A2         Use of SI-Units        

A3         Constants and Important Parameters           

A4         Further Equations    

A5         Overall View of Experiments          

A6         Meteorological Measurements Stations      

A7         Available Eddy-Covariance Software         

A8         Glossary      

A9         Micrometeorological Standards used in Germany  

              References   

 

              Index

Thomas Foken is a retired professor of micrometeorology at the University of Bayreuth. His research interests encompass the interaction between the Earth's surface and the atmosphere, with a specific emphasis on measuring and modeling the exchange of energy and matter, particularly in the domain of experimental meteorology. His noteworthy scientific contributions have earned him several international awards.

Matthias Mauder is professor of meteorology at the TUD Dresden University of Technology. In his research, he integrates diverse observational methods with numerical modeling to enhance our comprehension of turbulent transport processes. His work spans investigations into the carbon and water cycles, regional climate dynamics, climate adaptation, and urban climate studies.



 

Bridges the gap in the field of measurement technology, measurement methods

Numerous examples and inserts with essential knowledge for clarification

Modular preparation of the individual topics