Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/materiaux/polymer-blend-nanocomposites-for-energy-storage-applications/descriptif_4820521
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=4820521

Polymer Blend Nanocomposites for Energy Storage Applications Micro and Nano Technologies Series

Langue : Anglais

Coordonnateurs : Thomas Sabu, A. R Ajitha, Jaroszewski Maciej

Couverture de l’ouvrage Polymer Blend Nanocomposites for Energy Storage Applications

Polymer Blend Nanocomposites for Energy Storage Applications presents the latest developments in polymer blend-based nanocomposites for applications in energy storage, covering theoretical concepts, preparation methods, characterization techniques, properties and performance. The book begins by introducing polymer blend-based nanocomposites, preparation methods, mechanisms, requirements, theory, modeling, and simulation, with subsequent sections covering the use of specific base materials, including elastomers, thermoplastics, thermoset polymers, and biodegradable polymers. Final sections covers polymer blend nanocomposites with different fillers, both for conducting polymers and non-conducting polymers.

Devices discussed include capacitors, supercapacitors, batteries, fuel cells, and solar cells. Finally, other key aspects are considered, including the conversion from laboratory to industry and recycling and lifecycle assessment of polymer blend nanocomposites used in energy devices.

Section 1 Introduction Chapter 1 Polymer blend nanocomposites: Fundamentals, preparation, and characterization Chapter 2 Fundamental mechanisms and requirements of energy storage materials Section 2 Types of polymer blend nanocomposites in applications for energy storage Chapter 3 Elastomeric polymer blend nanocomposites for energy storage applications Chapter 4 Thermoplastic-based polymer blend nanocomposites for energy storage Chapter 5 Thermosetting-based blend polymer nanocomposites for energy storage Chapter 6 Biodegradable polymer blend nanocomposites for energy storage application Chapter 7 Polymer blend nanocomposite electrolytes for advanced energy storage applications Section 3 Polymer blend nanocomposites with various fillers for energy storage applications Chapter 8 Polymer blend nanocomposites with CNTs for energy storage applications Chapter 9 Graphene-based polymer blend nanocomposites for energy storage applications Chapter 10 Polymer blend nanocomposites of fullerene for energy storage Chapter 11 Polymers with carbon-based quantum dots for energy storage Chapter 12 Polymer blend nanocomposites with metal-based nanomaterials for energy storage Chapter 13 Polymer blend nanocomposites with hybrid nanomaterials for energy storage Section 4 Applications of polymer blend nanocomposites in energy devices Chapter 14 Polymer blend nanocomposites for capacitor applications Chapter 15 Polymer blend nanocomposites for supercapacitor applications Chapter 16 Polymer blend nanocomposites for battery applications Chapter 17 Polymer blend nanocomposites for polymer electrolyte membrane fuel cell (PEMFC) applications Chapter 18 Polymer blend nanocomposites for solar cell applications Section 5 Lab to industry, recycling, and life cycle assessment Chapter 19 Polymer composites for energy storage: Commercialization, lifecycle assessment, and recycling

Professor Sabu Thomas is the Director of Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala, India. He is also currently the Chairman of the Trivandrum Engineering Science and Technology Research Park (TrESPARK), Trivandrum, Kerala, India. He was the former Vice Chancellor of Mahatma Gandhi University, Kottayam, Kerala, India. Prof. Thomas is a highly committed teacher and a remarkably active researcher well-known nationally and internationally for his outstanding contributions in polymer science and nanotechnology. He has published over 1400 research articles in international refereed journals. and has also edited and written 210 books. His H-index is 140 and total citations are more than 94,000. He has supervised 125 PhD theses. He has received many international and national awards and recognitions. Under the leadership of Prof. Thomas, Mahatma Gandhi University has been transformed into a top University in India.


Dr. Ajitha A.R. is a researcher at the International and Inter University Centre for Nanoscience and Nanotechnology (IIUCNN), Mahatma Gandhi University, India. With more than 5 years of experience in the field, her research interests include preparation and characterization of nanocomposites, and modification of nanofillers. Dr. Ajitha has published numerous research articles in high impact factor international journals, co-edited one book, and authored more than 8 book chapters. She has also attended and presented papers at a number of conferences and seminars.
Prof. Maciej Jaroszewski is a Professor in the Department of Electrical Engineering Fundamentals at Wroclaw University of Science and Technology (WUST), Deputy Head of the Department, and Head of the High Voltage Laboratory. He was previously Assistant Professor at the Institute of Electrical Engineering Fundamentals (WUST), from 1997.
In 2019, Prof. Jaroszewski obtained an additional scientific degree, a “PhD of technical sciences with
  • Focuses on nanocomposites based on polymer blends, both conducting and nonconducting
  • Guides the reader to applications in capacitors, supercapacitors, batteries, fuel cells, and solar cells, among others
  • Considers translation from lab to industry, recycling, and lifecycle assessment

Date de parution :

Ouvrage de 570 p.

19x23.3 cm

Disponible chez l'éditeur (délai d'approvisionnement : 14 jours).

253,24 €

Ajouter au panier