Lavoisier S.A.S.
14 rue de Provigny
94236 Cachan cedex
FRANCE

Heures d'ouverture 08h30-12h30/13h30-17h30
Tél.: +33 (0)1 47 40 67 00
Fax: +33 (0)1 47 40 67 02


Url canonique : www.lavoisier.fr/livre/autre/aerodynamic-theory/durand/descriptif_3078092
Url courte ou permalien : www.lavoisier.fr/livre/notice.asp?ouvrage=3078092

Aerodynamic Theory, 1936 A General Review of Progress Under a Grant of the Guggenheim Fund for the Promotion of Aeronautics

Langue : Anglais

Auteur :

Couverture de l’ouvrage Aerodynamic Theory
Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.
Division P Airplane as a Whole General View of Mutual Interactions Among Constituent Systems.- Preface.- 1. Influence of the Lifting System on the Non-Lifting System.- 2. Influence of the Non-Lifting System on the Lifting System.- 3. Influence of the Lifting System on the Propulsive System.- 4. Influence of Propulsive System on the Lifting System.- 5. Influence of the Lifting System on the Control System.- 6. Influence of the Control System on the Lifting System.- 7. Influence of the Non-Lifting System on the Propulsive System.- 8. Influence of the Propulsive System on the Non-Lifting System.- 9. Influence of the Non-Lifting System on the Control System.- 10. Influence of the Control System on the Non-Lifting System.- 11. Influence of the Propulsive System on the Control System.- 12. Influence of the Control System on the Propulsive System.- 13. General Summary of Interferences.- Division Q Aerodynamics of Airships.- Preface.- 1. Introduction.- 2. Area of Apparent Mass.- 3. Volume of Apparent Axial Mass.- 4. Lateral Motion.- 5. Difference of the Inertia Factors.- 6. Nose Pressure.- 7. Stability.- 8. Lateral Forces in Straight Motion.- 9. Lateral Forces in Curved Motion.- 10. Lift of the Airship.- 11. Conclusion.- Division R Performance of Airships.- Preface.- I. Buoyancy.- 1. Buoyancy Equilibrium and Its Maintenance.- 2. The Bulkhead Problem and Aerostatic Stability.- 3. Aerostatic Performance.- II. Propulsion.- 1. Axial Motion.- 2. Resistance of Hull.- 3. Resistance of Accessories.- 4. Experimental Determination of Drag.- 5. Propulsive Efficiency. Speed Performance.- 6. Fuel Economy, Range.- III. Dynamic Lift.- 1. Flight with Dynamic Lift.- 2. Dynamic Lift of the Hull.- 3. Lift Due to Fins.- 4. Dynamic Lift Experiments.- IV. Maneuvering.- 1. Curvilinear Flight.- 2. Dynamic Stability.- 3. Control Maneuvers.- 4. Gusts.- V. Mooring and Ground Handling.- 1. Mast Mooring.- 2. Cable Mooring.- 3. Ground Transport.- VI. Outstanding Problems.- Division S Hydrodynamics of Boats and Floats.- Editor’s Preface.- I. Historical, Different Types of Seaplanes Principle of the Ramus Step.- 1. Introductory.- 2. Conditions Imposed on Seaplanes.- 3. Principle of Ramus.- 4. Floatability and Stability at Rest.- 5. History of the Step.- II. Description of the Different Phases of Take-Off from and Return to the Water.- 1. Normal Take-Off.- 2. Varying Conditions.- 3. Take-Off With Bad Weather.- 4. Normal Alighting.- 5. Diverse Conditions.- 6. Alighting on Rough Water.- 7. Graphical Representation.- 8. The Thrust of a Propeller Under Constant Torque With Variable Speed.- 9. Determination of a Curve of Take-Off.- 10. Duration and Distance of Take-Off.- III. Discussion of the General Phenomena Arising During the Period of Take-Off.- 1. Introductory.- 2. Trochoidal Waves.- 3. Appearance of the Stern Wave.- 4. Experiments on the Separation of the Stern Wave.- 5. Study of Take-Off From Diagrams.- 6. First Diagram.- 7. Second Diagram.- 8. Third Diagram, Determination of Elements Relative to the Critical Speed.- 9. Fourth Diagram. Hydroplaning at a Constant Angle of Inclination.- 10. Measures Taken on a Model Seaplane. Hydroplaning at Constant Angle of Incidence.- 11. Influence of the Angle of Incidence in Hydroplaning.- 12. Complete Study During the Hydroplane Period.- 13. Zone of Water Contact Above General Level.- 14. Study of Two Planes in Tandem with Constant Incidence.- 15. Comparison of Seaplane Under Water Forms with Variable Width.- 16. Tests on Model with Varying Longitudinal Location of Wing.- IV. Differences Between Airplanes and Seaplanes with Reference to the Aerial Portions.- V. Differences and Analogies Between Forms for Hydroplanes and for Seaplanes.- 1. Introductory.- 2. Experiments on Bevelled Planes.- 3. The Immersion of Ship-Formed Models and the Emergence of Seaplane Models.- VI. Calculations of Displacement and of Stability.- 1. Displacement and Stability of the Seaplane at Rest.- 2. Determination of Form.- 3. Interpolation of Volume.- 4. Bonjean Scales.- VII. Stability Under Varing Conditions.- 1. Stability when Drifting with Motors Stopped.- 2. Stability of Route with Motors Running.- 3. Stability under Tow.- VIII. Rules of Extrapolation.- 1. Introductory.- 2. Rumpler’s Method of Extrapolation.- IX. Tests on Reduced Scale Models.- 1. Introductory.- 2. Models with Fixed Incidence.- 3. Tests with Unloading Proportional to the Square of the Velocity.- 4. Tests with Free Incidence.- 5. Channel for Flowing Water.- X. Strength of Seaplane Hull.- XI. Gaps Between theory and Practice.- 1. Introductory.- 2. Sottorf’s Analysis.- Conclusion.- Division T Aerodynamics of Cooling.- Preface.- I. Fundamental Ideas.- 1. Temperature, Heat Energy.- 2. Transmission of Heat.- 3. Laminar and Eddying Flow.- 4. Physical Properties of Air.- II. Theory of Heat Transfer in Laminar Flow.- 1. General Problem.- 2. Equations of Motion of the Fluid.- 3. Equation for the Flow of Heat.- 4. Common Assumptions to Facilitate Solution.- 5. Laminar Flow in a Pipe.- 6. Laminar Flow in a Two-Dimensional Boundary Layer.- 7. Laminar Flow Along a Thin Flat Plate.- III. Theory of Heat Transfer in Eddying Flow.- 1. Reynolds Theory of Eddying Flow.- 2. The Concept of Eddy Viscosity.- 3. Eddying Flow in a Pipe.- 4. The Concept of Mixing Length.- 5. Von Kármán’s Principle of Similarity.- 6. Present Status.- IV. Dimensioral Analysis.- 1. Introductory.- 2. The II Theorem.- 3. Fundamental Units.- 4. Application to Convective Heat Transfer.- 5. Effect of Variation of Properties of the Fluid with Temperature.- 6. Modification by Introduction of Experimental Data.- V. The Analogy Between Heat Transfer and Skin Friction.- 1. The Reynolds Formulation.- 2. The Prandtl-Taylor Formulation.- 3. General Remarks.- VI. Heat Transfer from a Skin Friction Plate.- 1. Introductory.- 2. Distribution of Speed in Isothermal Flow.- 3. The Concept of Initial Turbulence.- 4. The Effect of Turbulence on the Transition from Laminar to Eddying Flow.- 5. Distinction Between Laminar and Eddying Flow.- 6. Effect of Heat Transfer on the Velocity Field.- 7. Distribution of Temperature.- 8. Heat Transfer from Skin Friction Plate.- 9. Effect of Pressure Gradients.- VII. Heat Transfer from a Pipe to a Fluid Stream within the Pipe.- 1. Flow near the Entrance.- 2. Heat Transfer in the Entrance Length.- 3. Heat Transfer for a Short Section of an Infinitely Long Pipe.- 4. Remarks in Comparisons with Experimental Data.- VIII. Heat Transfer from Cylinders Immersed in a Fluid Stream.- 1. Dynamic Boundary Layer.- 2. Thermal Boundary Layer.- 3. The Phenomenon of Separation.- 4. Local Rate of Heat Transfer as a Function of Azimuthal Angle.- 5. Average Rate of Heat Transfer.- 6. Concluding Remarks.